library(tree)library(ISLR)attach(Carseats)
## The following objects are masked from Carseats (pos = 21):## ## Advertising, Age, CompPrice, Education, Income, Population,## Price, Sales, ShelveLoc, Urban, US## ## The following objects are masked from Carseats (pos = 22):## ## Advertising, Age, CompPrice, Education, Income, Population,## Price, Sales, ShelveLoc, Urban, US
High=ifelse(Sales<=8,"No","Yes")Carseats=data.frame(Carseats,High)tree.carseats=tree(High~.-Sales,Carseats)summary(tree.carseats)
## ## Classification tree:## tree(formula = High ~ . - Sales, data = Carseats)## Variables actually used in tree construction:## [1] "ShelveLoc" "Price" "Income" "CompPrice" "Population" ## [6] "Advertising" "Age" "US" ## Number of terminal nodes: 27 ## Residual mean deviance: 0.46 = 171 / 373 ## Misclassification error rate: 0.09 = 36 / 400
plot(tree.carseats)text(tree.carseats,pretty=0)
tree.carseats
## node), split, n, deviance, yval, (yprob)## * denotes terminal node
## Error in prettyNum(.Internal(format(x, trim, digits, nsmall, width, 3L, : invalid 'digits' argument
set.seed(2)train=sample(1:nrow(Carseats), 200)Carseats.test=Carseats[-train,]High.test=High[-train]tree.carseats=tree(High~.-Sales,Carseats,subset=train)tree.pred=predict(tree.carseats,Carseats.test,type="class")table(tree.pred,High.test)
## High.test## tree.pred No Yes## No 86 27## Yes 30 57
(86+57)/200
## [1] 0.71
set.seed(3)cv.carseats=cv.tree(tree.carseats,FUN=prune.misclass)
## Error in eval(expr, envir, enclos): object 'High' not found
names(cv.carseats)
## Error in eval(expr, envir, enclos): object 'cv.carseats' not found
cv.carseats
par(mfrow=c(1,2))plot(cv.carseats$size,cv.carseats$dev,type="b")
## Error in plot(cv.carseats$size, cv.carseats$dev, type = "b"): error in evaluating the argument 'x' in selecting a method for function 'plot': Error: object 'cv.carseats' not found
plot(cv.carseats$k,cv.carseats$dev,type="b")
## Error in plot(cv.carseats$k, cv.carseats$dev, type = "b"): error in evaluating the argument 'x' in selecting a method for function 'plot': Error: object 'cv.carseats' not found
prune.carseats=prune.misclass(tree.carseats,best=9)plot(prune.carseats)text(prune.carseats,pretty=0)tree.pred=predict(prune.carseats,Carseats.test,type="class")table(tree.pred,High.test)
## High.test## tree.pred No Yes## No 94 24## Yes 22 60
(94+60)/200
## [1] 0.77
prune.carseats=prune.misclass(tree.carseats,best=15)plot(prune.carseats)text(prune.carseats,pretty=0)
tree.pred=predict(prune.carseats,Carseats.test,type="class")table(tree.pred,High.test)
## High.test## tree.pred No Yes## No 86 22## Yes 30 62
(86+62)/200
## [1] 0.74
library(MASS)set.seed(1)train = sample(1:nrow(Boston), nrow(Boston)/2)tree.boston=tree(medv~.,Boston,subset=train)summary(tree.boston)
## ## Regression tree:## tree(formula = medv ~ ., data = Boston, subset = train)## Variables actually used in tree construction:## [1] "lstat" "rm" "dis" ## Number of terminal nodes: 8 ## Residual mean deviance: 13 = 3100 / 245 ## Distribution of residuals:## Min. 1st Qu. Median Mean 3rd Qu. Max. ## -14.1 -2.0 -0.1 0.0 2.0 12.6
plot(tree.boston)text(tree.boston,pretty=0)
cv.boston=cv.tree(tree.boston)plot(cv.boston$size,cv.boston$dev,type='b')
prune.boston=prune.tree(tree.boston,best=5)plot(prune.boston)text(prune.boston,pretty=0)
yhat=predict(tree.boston,newdata=Boston[-train,])boston.test=Boston[-train,"medv"]plot(yhat,boston.test)abline(0,1)
mean((yhat-boston.test)^2)
## [1] 25
library(randomForest)
## randomForest 4.6-10## Type rfNews() to see new features/changes/bug fixes.
set.seed(1)bag.boston=randomForest(medv~.,data=Boston,subset=train,mtry=13,importance=TRUE)bag.boston
## ## Call:## randomForest(formula = medv ~ ., data = Boston, mtry = 13, importance = TRUE, subset = train) ## Type of random forest: regression## Number of trees: 500## No. of variables tried at each split: 13## ## Mean of squared residuals: 11## % Var explained: 87
yhat.bag = predict(bag.boston,newdata=Boston[-train,])plot(yhat.bag, boston.test)abline(0,1)
mean((yhat.bag-boston.test)^2)
## [1] 13
bag.boston=randomForest(medv~.,data=Boston,subset=train,mtry=13,ntree=25)yhat.bag = predict(bag.boston,newdata=Boston[-train,])mean((yhat.bag-boston.test)^2)
set.seed(1)rf.boston=randomForest(medv~.,data=Boston,subset=train,mtry=6,importance=TRUE)yhat.rf = predict(rf.boston,newdata=Boston[-train,])mean((yhat.rf-boston.test)^2)
## [1] 11
importance(rf.boston)
## %IncMSE IncNodePurity## crim 12.5 1095## zn 1.4 64## indus 9.3 1086## chas 2.5 76## nox 12.8 1009## rm 31.6 6705## age 10.0 575## dis 12.8 1351## rad 3.9 94## tax 7.6 453## ptratio 12.0 919## black 7.4 359## lstat 27.7 6928
varImpPlot(rf.boston)
library(gbm)
## Loading required package: survival## ## Attaching package: 'survival'## ## The following object is masked from 'package:boot':## ## aml## ## Loading required package: lattice## ## Attaching package: 'lattice'## ## The following object is masked from 'package:boot':## ## melanoma## ## Loading required package: parallel## Loaded gbm 2.1
set.seed(1)boost.boston=gbm(medv~.,data=Boston[train,],distribution="gaussian",n.trees=5000,interaction.depth=4)summary(boost.boston)
## var rel.inf## lstat lstat 45.963## rm rm 31.224## dis dis 6.809## crim crim 4.074## nox nox 2.561## ptratio ptratio 2.275## black black 1.797## age age 1.649## tax tax 1.360## indus indus 1.271## chas chas 0.801## rad rad 0.203## zn zn 0.015
par(mfrow=c(1,2))plot(boost.boston,i="rm")plot(boost.boston,i="lstat")
yhat.boost=predict(boost.boston,newdata=Boston[-train,],n.trees=5000)mean((yhat.boost-boston.test)^2)
## [1] 12
boost.boston=gbm(medv~.,data=Boston[train,],distribution="gaussian",n.trees=5000,interaction.depth=4,shrinkage=0.2,verbose=F)yhat.boost=predict(boost.boston,newdata=Boston[-train,],n.trees=5000)mean((yhat.boost-boston.test)^2)
[trang chủ] [liên hệ] [code]