library(ISLR)names(Smarket)
## [1] "Year" "Lag1" "Lag2" "Lag3" "Lag4" "Lag5" ## [7] "Volume" "Today" "Direction"
dim(Smarket)
## [1] 1250 9
summary(Smarket)
## Year Lag1 Lag2 Lag3 ## Min. :2001 Min. :-4.9 Min. :-4.9 Min. :-4.9 ## 1st Qu.:2002 1st Qu.:-0.6 1st Qu.:-0.6 1st Qu.:-0.6 ## Median :2003 Median : 0.0 Median : 0.0 Median : 0.0 ## Mean :2003 Mean : 0.0 Mean : 0.0 Mean : 0.0 ## 3rd Qu.:2004 3rd Qu.: 0.6 3rd Qu.: 0.6 3rd Qu.: 0.6 ## Max. :2005 Max. : 5.7 Max. : 5.7 Max. : 5.7 ## Lag4 Lag5 Volume Today Direction ## Min. :-4.9 Min. :-4.9 Min. :0.36 Min. :-4.9 Down:602 ## 1st Qu.:-0.6 1st Qu.:-0.6 1st Qu.:1.26 1st Qu.:-0.6 Up :648 ## Median : 0.0 Median : 0.0 Median :1.42 Median : 0.0 ## Mean : 0.0 Mean : 0.0 Mean :1.48 Mean : 0.0 ## 3rd Qu.: 0.6 3rd Qu.: 0.6 3rd Qu.:1.64 3rd Qu.: 0.6 ## Max. : 5.7 Max. : 5.7 Max. :3.15 Max. : 5.7
pairs(Smarket)
cor(Smarket[,-9])
## Year Lag1 Lag2 Lag3 Lag4 Lag5 Volume Today## Year 1.000 0.0297 0.0306 0.0332 0.0357 0.0298 0.539 0.0301## Lag1 0.030 1.0000 -0.0263 -0.0108 -0.0030 -0.0057 0.041 -0.0262## Lag2 0.031 -0.0263 1.0000 -0.0259 -0.0109 -0.0036 -0.043 -0.0103## Lag3 0.033 -0.0108 -0.0259 1.0000 -0.0241 -0.0188 -0.042 -0.0024## Lag4 0.036 -0.0030 -0.0109 -0.0241 1.0000 -0.0271 -0.048 -0.0069## Lag5 0.030 -0.0057 -0.0036 -0.0188 -0.0271 1.0000 -0.022 -0.0349## Volume 0.539 0.0409 -0.0434 -0.0418 -0.0484 -0.0220 1.000 0.0146## Today 0.030 -0.0262 -0.0103 -0.0024 -0.0069 -0.0349 0.015 1.0000
attach(Smarket)plot(Volume)
glm.fit=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,data=Smarket,family=binomial)summary(glm.fit)
## ## Call:## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + ## Volume, family = binomial, data = Smarket)## ## Deviance Residuals: ## Min 1Q Median 3Q Max ## -1.45 -1.20 1.07 1.15 1.33 ## ## Coefficients:## Estimate Std. Error z value Pr(>|z|)## (Intercept) -0.12600 0.24074 -0.52 0.60## Lag1 -0.07307 0.05017 -1.46 0.15## Lag2 -0.04230 0.05009 -0.84 0.40## Lag3 0.01109 0.04994 0.22 0.82## Lag4 0.00936 0.04997 0.19 0.85## Lag5 0.01031 0.04951 0.21 0.83## Volume 0.13544 0.15836 0.86 0.39## ## (Dispersion parameter for binomial family taken to be 1)## ## Null deviance: 1731.2 on 1249 degrees of freedom## Residual deviance: 1727.6 on 1243 degrees of freedom## AIC: 1742## ## Number of Fisher Scoring iterations: 3
coef(glm.fit)
## (Intercept) Lag1 Lag2 Lag3 Lag4 Lag5 ## -0.1260 -0.0731 -0.0423 0.0111 0.0094 0.0103 ## Volume ## 0.1354
summary(glm.fit)$coef
## Estimate Std. Error z value Pr(>|z|)## (Intercept) -0.1260 0.24 -0.52 0.60## Lag1 -0.0731 0.05 -1.46 0.15## Lag2 -0.0423 0.05 -0.84 0.40## Lag3 0.0111 0.05 0.22 0.82## Lag4 0.0094 0.05 0.19 0.85## Lag5 0.0103 0.05 0.21 0.83## Volume 0.1354 0.16 0.86 0.39
summary(glm.fit)$coef[,4]
## (Intercept) Lag1 Lag2 Lag3 Lag4 Lag5 ## 0.60 0.15 0.40 0.82 0.85 0.83 ## Volume ## 0.39
glm.probs=predict(glm.fit,type="response")glm.probs[1:10]
## 1 2 3 4 5 6 7 8 9 10 ## 0.51 0.48 0.48 0.52 0.51 0.51 0.49 0.51 0.52 0.49
contrasts(Direction)
## Up## Down 0## Up 1
glm.pred=rep("Down",1250)glm.pred[glm.probs>.5]="Up"table(glm.pred,Direction)
## Direction## glm.pred Down Up## Down 145 141## Up 457 507
(507+145)/1250
## [1] 0.52
mean(glm.pred==Direction)
train=(Year<2005)Smarket.2005=Smarket[!train,]dim(Smarket.2005)
## [1] 252 9
Direction.2005=Direction[!train]glm.fit=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,data=Smarket,family=binomial,subset=train)glm.probs=predict(glm.fit,Smarket.2005,type="response")glm.pred=rep("Down",252)glm.pred[glm.probs>.5]="Up"table(glm.pred,Direction.2005)
## Direction.2005## glm.pred Down Up## Down 77 97## Up 34 44
mean(glm.pred==Direction.2005)
## [1] 0.48
mean(glm.pred!=Direction.2005)
glm.fit=glm(Direction~Lag1+Lag2,data=Smarket,family=binomial,subset=train)glm.probs=predict(glm.fit,Smarket.2005,type="response")glm.pred=rep("Down",252)glm.pred[glm.probs>.5]="Up"table(glm.pred,Direction.2005)
## Direction.2005## glm.pred Down Up## Down 35 35## Up 76 106
## [1] 0.56
106/(106+76)
## [1] 0.58
predict(glm.fit,newdata=data.frame(Lag1=c(1.2,1.5),Lag2=c(1.1,-0.8)),type="response")
## 1 2 ## 0.48 0.50
library(MASS)lda.fit=lda(Direction~Lag1+Lag2,data=Smarket,subset=train)lda.fit
## Call:## lda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)## ## Prior probabilities of groups:## Down Up ## 0.49 0.51 ## ## Group means:## Lag1 Lag2## Down 0.043 0.034## Up -0.040 -0.031## ## Coefficients of linear discriminants:## LD1## Lag1 -0.64## Lag2 -0.51
plot(lda.fit)
lda.pred=predict(lda.fit, Smarket.2005)names(lda.pred)
## [1] "class" "posterior" "x"
lda.class=lda.pred$classtable(lda.class,Direction.2005)
## Direction.2005## lda.class Down Up## Down 35 35## Up 76 106
mean(lda.class==Direction.2005)
sum(lda.pred$posterior[,1]>=.5)
## [1] 70
sum(lda.pred$posterior[,1]<.5)
## [1] 182
lda.pred$posterior[1:20,1]
## 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 ## 0.49 0.48 0.47 0.47 0.49 0.49 0.50 0.49 0.49 0.48 0.49 0.51 0.49 0.47 0.47 ## 1014 1015 1016 1017 1018 ## 0.48 0.49 0.50 0.50 0.49
lda.class[1:20]
## [1] Up Up Up Up Up Up Up Up Up Up Up Down Up Up ## [15] Up Up Up Down Up Up ## Levels: Down Up
sum(lda.pred$posterior[,1]>.9)
## [1] 0
qda.fit=qda(Direction~Lag1+Lag2,data=Smarket,subset=train)qda.fit
## Call:## qda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)## ## Prior probabilities of groups:## Down Up ## 0.49 0.51 ## ## Group means:## Lag1 Lag2## Down 0.043 0.034## Up -0.040 -0.031
qda.class=predict(qda.fit,Smarket.2005)$classtable(qda.class,Direction.2005)
## Direction.2005## qda.class Down Up## Down 30 20## Up 81 121
mean(qda.class==Direction.2005)
## [1] 0.6
library(class)train.X=cbind(Lag1,Lag2)[train,]test.X=cbind(Lag1,Lag2)[!train,]train.Direction=Direction[train]set.seed(1)knn.pred=knn(train.X,test.X,train.Direction,k=1)table(knn.pred,Direction.2005)
## Direction.2005## knn.pred Down Up## Down 43 58## Up 68 83
(83+43)/252
## [1] 0.5
knn.pred=knn(train.X,test.X,train.Direction,k=3)table(knn.pred,Direction.2005)
## Direction.2005## knn.pred Down Up## Down 48 54## Up 63 87
mean(knn.pred==Direction.2005)
## [1] 0.54
dim(Caravan)
## [1] 5822 86
attach(Caravan)summary(Purchase)
## No Yes ## 5474 348
348/5822
## [1] 0.06
standardized.X=scale(Caravan[,-86])var(Caravan[,1])
## [1] 165
var(Caravan[,2])
## [1] 0.16
var(standardized.X[,1])
## [1] 1
var(standardized.X[,2])
test=1:1000train.X=standardized.X[-test,]test.X=standardized.X[test,]train.Y=Purchase[-test]test.Y=Purchase[test]set.seed(1)knn.pred=knn(train.X,test.X,train.Y,k=1)mean(test.Y!=knn.pred)
## [1] 0.12
mean(test.Y!="No")
## [1] 0.059
table(knn.pred,test.Y)
## test.Y## knn.pred No Yes## No 873 50## Yes 68 9
9/(68+9)
knn.pred=knn(train.X,test.X,train.Y,k=3)table(knn.pred,test.Y)
## test.Y## knn.pred No Yes## No 920 54## Yes 21 5
5/26
## [1] 0.19
knn.pred=knn(train.X,test.X,train.Y,k=5)table(knn.pred,test.Y)
## test.Y## knn.pred No Yes## No 930 55## Yes 11 4
4/15
## [1] 0.27
# Comparision to logistic regressionglm.fit=glm(Purchase~.,data=Caravan,family=binomial,subset=-test)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
glm.probs=predict(glm.fit,Caravan[test,],type="response")glm.pred=rep("No",1000)glm.pred[glm.probs>.5]="Yes"table(glm.pred,test.Y)
## test.Y## glm.pred No Yes## No 934 59## Yes 7 0
glm.pred=rep("No",1000)glm.pred[glm.probs>.25]="Yes"table(glm.pred,test.Y)
## test.Y## glm.pred No Yes## No 919 48## Yes 22 11
11/(22+11)
## [1] 0.33
[trang chủ] [liên hệ] [code]