Non-linear Modeling


Hồi quy đa thức và Hàm bậc thang

library(ISLR)
attach(Wage)
## The following object is masked from Auto (pos = 11):
##
## year
##
## The following object is masked from auto01:
##
## year
##
## The following object is masked from Boston (pos = 20):
##
## age
##
## The following object is masked from Boston (pos = 22):
##
## age
##
## The following object is masked from Auto (pos = 25):
##
## year
fit=lm(wage~poly(age,4),data=Wage)
coef(summary(fit))
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 112 0.73 153.3 0.0e+00
## poly(age, 4)1 447 39.91 11.2 1.5e-28
## poly(age, 4)2 -478 39.91 -12.0 2.4e-32
## poly(age, 4)3 126 39.91 3.1 1.7e-03
## poly(age, 4)4 -78 39.91 -2.0 5.1e-02
fit2=lm(wage~poly(age,4,raw=T),data=Wage)
coef(summary(fit2))
##                        Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.8e+02 6.0e+01 -3.1 0.00218
## poly(age, 4, raw = T)1 2.1e+01 5.9e+00 3.6 0.00031
## poly(age, 4, raw = T)2 -5.6e-01 2.1e-01 -2.7 0.00626
## poly(age, 4, raw = T)3 6.8e-03 3.1e-03 2.2 0.02640
## poly(age, 4, raw = T)4 -3.2e-05 1.6e-05 -2.0 0.05104
fit2a=lm(wage~age+I(age^2)+I(age^3)+I(age^4),data=Wage)
coef(fit2a)
## (Intercept)         age    I(age^2)    I(age^3)    I(age^4) 
## -1.8e+02 2.1e+01 -5.6e-01 6.8e-03 -3.2e-05
fit2b=lm(wage~cbind(age,age^2,age^3,age^4),data=Wage)
agelims=range(age)
age.grid=seq(from=agelims[1],to=agelims[2])
preds=predict(fit,newdata=list(age=age.grid),se=TRUE)
se.bands=cbind(preds$fit+2*preds$se.fit,preds$fit-2*preds$se.fit)
par(mfrow=c(1,2),mar=c(4.5,4.5,1,1),oma=c(0,0,4,0))
plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Degree-4 Polynomial",outer=T)
lines(age.grid,preds$fit,lwd=2,col="blue")
matlines(age.grid,se.bands,lwd=1,col="blue",lty=3)
preds2=predict(fit2,newdata=list(age=age.grid),se=TRUE)
max(abs(preds$fit-preds2$fit))
## [1] 7.8e-11
fit.1=lm(wage~age,data=Wage)
fit.2=lm(wage~poly(age,2),data=Wage)
fit.3=lm(wage~poly(age,3),data=Wage)
fit.4=lm(wage~poly(age,4),data=Wage)
fit.5=lm(wage~poly(age,5),data=Wage)
anova(fit.1,fit.2,fit.3,fit.4,fit.5)
## Analysis of Variance Table
##
## Model 1: wage ~ age
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2998 5022216
## 2 2997 4793430 1 228786 143.59 <2e-16 ***
## 3 2996 4777674 1 15756 9.89 0.0017 **
## 4 2995 4771604 1 6070 3.81 0.0510 .
## 5 2994 4770322 1 1283 0.80 0.3697
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coef(summary(fit.5))
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 112 0.73 153.3 0.0e+00
## poly(age, 5)1 447 39.92 11.2 1.5e-28
## poly(age, 5)2 -478 39.92 -12.0 2.4e-32
## poly(age, 5)3 126 39.92 3.1 1.7e-03
## poly(age, 5)4 -78 39.92 -2.0 5.1e-02
## poly(age, 5)5 -36 39.92 -0.9 3.7e-01
(-11.983)^2
## [1] 144
fit.1=lm(wage~education+age,data=Wage)
fit.2=lm(wage~education+poly(age,2),data=Wage)
fit.3=lm(wage~education+poly(age,3),data=Wage)
anova(fit.1,fit.2,fit.3)
## Analysis of Variance Table
##
## Model 1: wage ~ education + age
## Model 2: wage ~ education + poly(age, 2)
## Model 3: wage ~ education + poly(age, 3)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2994 3867992
## 2 2993 3725395 1 142597 114.70 <2e-16 ***
## 3 2992 3719809 1 5587 4.49 0.034 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit=glm(I(wage>250)~poly(age,4),data=Wage,family=binomial)
preds=predict(fit,newdata=list(age=age.grid),se=T)
pfit=exp(preds$fit)/(1+exp(preds$fit))
se.bands.logit = cbind(preds$fit+2*preds$se.fit, preds$fit-2*preds$se.fit)
se.bands = exp(se.bands.logit)/(1+exp(se.bands.logit))
preds=predict(fit,newdata=list(age=age.grid),type="response",se=T)
plot(age,I(wage>250),xlim=agelims,type="n",ylim=c(0,.2))
points(jitter(age), I((wage>250)/5),cex=.5,pch="|",col="darkgrey")
lines(age.grid,pfit,lwd=2, col="blue")
matlines(age.grid,se.bands,lwd=1,col="blue",lty=3)

plot of chunk Polynomial Regression and Step Functions

table(cut(age,4))
## 
## (17.9,33.5] (33.5,49] (49,64.5] (64.5,80.1]
## 750 1399 779 72
fit=lm(wage~cut(age,4),data=Wage)
coef(summary(fit))
##                        Estimate Std. Error t value Pr(>|t|)
## (Intercept) 94.2 1.5 63.8 0.0e+00
## cut(age, 4)(33.5,49] 24.1 1.8 13.1 2.0e-38
## cut(age, 4)(49,64.5] 23.7 2.1 11.4 1.0e-29
## cut(age, 4)(64.5,80.1] 7.6 5.0 1.5 1.3e-01

Splines

library(splines)
fit=lm(wage~bs(age,knots=c(25,40,60)),data=Wage)
pred=predict(fit,newdata=list(age=age.grid),se=T)
plot(age,wage,col="gray")
lines(age.grid,pred$fit,lwd=2)
lines(age.grid,pred$fit+2*pred$se,lty="dashed")
lines(age.grid,pred$fit-2*pred$se,lty="dashed")
dim(bs(age,knots=c(25,40,60)))
## [1] 3000    6
dim(bs(age,df=6))
## [1] 3000    6
attr(bs(age,df=6),"knots")
## 25% 50% 75% 
## 34 42 51
fit2=lm(wage~ns(age,df=4),data=Wage)
pred2=predict(fit2,newdata=list(age=age.grid),se=T)
lines(age.grid, pred2$fit,col="red",lwd=2)

plot of chunk Splines

plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Smoothing Spline")
fit=smooth.spline(age,wage,df=16)
fit2=smooth.spline(age,wage,cv=TRUE)
## Warning in smooth.spline(age, wage, cv = TRUE): cross-validation with
## non-unique 'x' values seems doubtful
fit2$df
## [1] 6.8
lines(fit,col="red",lwd=2)
lines(fit2,col="blue",lwd=2)
legend("topright",legend=c("16 DF","6.8 DF"),col=c("red","blue"),lty=1,lwd=2,cex=.8)

plot of chunk Splines

plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Local Regression")
fit=loess(wage~age,span=.2,data=Wage)
fit2=loess(wage~age,span=.5,data=Wage)
lines(age.grid,predict(fit,data.frame(age=age.grid)),col="red",lwd=2)
lines(age.grid,predict(fit2,data.frame(age=age.grid)),col="blue",lwd=2)
legend("topright",legend=c("Span=0.2","Span=0.5"),col=c("red","blue"),lty=1,lwd=2,cex=.8)

plot of chunk Splines

GAMs

gam1=lm(wage~ns(year,4)+ns(age,5)+education,data=Wage)
library(gam)
## Loaded gam 1.09.1
gam.m3=gam(wage~s(year,4)+s(age,5)+education,data=Wage)
par(mfrow=c(1,3))
plot(gam.m3, se=TRUE,col="blue")

plot of chunk GAMs

plot.gam(gam1, se=TRUE, col="red")

plot of chunk GAMs

gam.m1=gam(wage~s(age,5)+education,data=Wage)
gam.m2=gam(wage~year+s(age,5)+education,data=Wage)
anova(gam.m1,gam.m2,gam.m3,test="F")
## Analysis of Deviance Table
##
## Model 1: wage ~ s(age, 5) + education
## Model 2: wage ~ year + s(age, 5) + education
## Model 3: wage ~ s(year, 4) + s(age, 5) + education
## Resid. Df Resid. Dev Df Deviance F Pr(>F)
## 1 2990 3711731
## 2 2989 3693842 1 17889 14.5 0.00014 ***
## 3 2986 3689770 3 4071 1.1 0.34857
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(gam.m3)
## 
## Call: gam(formula = wage ~ s(year, 4) + s(age, 5) + education, data = Wage)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -119.43 -19.70 -3.33 14.17 213.48
##
## (Dispersion Parameter for gaussian family taken to be 1236)
##
## Null Deviance: 5222086 on 2999 degrees of freedom
## Residual Deviance: 3689770 on 2986 degrees of freedom
## AIC: 29888
##
## Number of Local Scoring Iterations: 2
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## s(year, 4) 1 27162 27162 22 2.9e-06 ***
## s(age, 5) 1 195338 195338 158 < 2e-16 ***
## education 4 1069726 267432 216 < 2e-16 ***
## Residuals 2986 3689770 1236
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## s(year, 4) 3 1.1 0.35
## s(age, 5) 4 32.4 <2e-16 ***
## education
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
preds=predict(gam.m2,newdata=Wage)
gam.lo=gam(wage~s(year,df=4)+lo(age,span=0.7)+education,data=Wage)
plot.gam(gam.lo, se=TRUE, col="green")

plot of chunk GAMs

gam.lo.i=gam(wage~lo(year,age,span=0.5)+education,data=Wage)
library(akima)
plot(gam.lo.i)
gam.lr=gam(I(wage>250)~year+s(age,df=5)+education,family=binomial,data=Wage)
par(mfrow=c(1,3))

plot of chunk GAMs

plot(gam.lr,se=T,col="green")

plot of chunk GAMs

table(education,I(wage>250))
##                     
## education FALSE TRUE
## 1. < HS Grad 268 0
## 2. HS Grad 966 5
## 3. Some College 643 7
## 4. College Grad 663 22
## 5. Advanced Degree 381 45
gam.lr.s=gam(I(wage>250)~year+s(age,df=5)+education,family=binomial,data=Wage,subset=(education!="1. < HS Grad"))
plot(gam.lr.s,se=T,col="green")

plot of chunk GAMs