Unsupervised Learning


Principal Components Analysis

states=row.names(USArrests)
states
##  [1] "Alabama"        "Alaska"         "Arizona"        "Arkansas"      
## [5] "California" "Colorado" "Connecticut" "Delaware"
## [9] "Florida" "Georgia" "Hawaii" "Idaho"
## [13] "Illinois" "Indiana" "Iowa" "Kansas"
## [17] "Kentucky" "Louisiana" "Maine" "Maryland"
## [21] "Massachusetts" "Michigan" "Minnesota" "Mississippi"
## [25] "Missouri" "Montana" "Nebraska" "Nevada"
## [29] "New Hampshire" "New Jersey" "New Mexico" "New York"
## [33] "North Carolina" "North Dakota" "Ohio" "Oklahoma"
## [37] "Oregon" "Pennsylvania" "Rhode Island" "South Carolina"
## [41] "South Dakota" "Tennessee" "Texas" "Utah"
## [45] "Vermont" "Virginia" "Washington" "West Virginia"
## [49] "Wisconsin" "Wyoming"
names(USArrests)
## [1] "Murder"   "Assault"  "UrbanPop" "Rape"
apply(USArrests, 2, mean)
##   Murder  Assault UrbanPop     Rape 
## 7.8 170.8 65.5 21.2
apply(USArrests, 2, var)
##   Murder  Assault UrbanPop     Rape 
## 19 6945 210 88
pr.out=prcomp(USArrests, scale=TRUE)
names(pr.out)
## [1] "sdev"     "rotation" "center"   "scale"    "x"
pr.out$center
##   Murder  Assault UrbanPop     Rape 
## 7.8 170.8 65.5 21.2
pr.out$scale
##   Murder  Assault UrbanPop     Rape 
## 4.4 83.3 14.5 9.4
pr.out$rotation
##            PC1   PC2   PC3    PC4
## Murder -0.54 0.42 -0.34 0.649
## Assault -0.58 0.19 -0.27 -0.743
## UrbanPop -0.28 -0.87 -0.38 0.134
## Rape -0.54 -0.17 0.82 0.089
dim(pr.out$x)
## [1] 50  4
biplot(pr.out, scale=0)

plot of chunk pca

pr.out$rotation=-pr.out$rotation
pr.out$x=-pr.out$x
biplot(pr.out, scale=0)

plot of chunk pca

pr.out$sdev
## [1] 1.57 0.99 0.60 0.42
pr.var=pr.out$sdev^2
pr.var
## [1] 2.48 0.99 0.36 0.17
pve=pr.var/sum(pr.var)
pve
## [1] 0.620 0.247 0.089 0.043
plot(pve, xlab="Principal Component", ylab="Proportion of Variance Explained", ylim=c(0,1),type='b')

plot of chunk pca

plot(cumsum(pve), xlab="Principal Component", ylab="Cumulative Proportion of Variance Explained", ylim=c(0,1),type='b')

plot of chunk pca

a=c(1,2,8,-3)
cumsum(a)
## [1]  1  3 11  8

Clustering

K-Means Clustering

set.seed(2)
x=matrix(rnorm(50*2), ncol=2)
x[1:25,1]=x[1:25,1]+3
x[1:25,2]=x[1:25,2]-4
km.out=kmeans(x,2,nstart=20)
km.out$cluster
##  [1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
## [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
plot(x, col=(km.out$cluster+1), main="K-Means Clustering Results with K=2", xlab="", ylab="", pch=20, cex=2)

plot of chunk kmc

set.seed(4)
km.out=kmeans(x,3,nstart=20)
km.out
## K-means clustering with 3 clusters of sizes 10, 23, 17
##
## Cluster means:
## [,1] [,2]
## 1 2.30 -2.696
## 2 -0.38 -0.087
## 3 3.78 -4.562
##
## Clustering vector:
## [1] 3 1 3 1 3 3 3 1 3 1 3 1 3 1 3 1 3 3 3 3 3 1 3 3 3 2 2 2 2 2 2 2 2 2 2
## [36] 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2
##
## Within cluster sum of squares by cluster:
## [1] 20 53 26
## (between_SS / total_SS = 79.3 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"
## [9] "ifault"
plot(x, col=(km.out$cluster+1), main="K-Means Clustering Results with K=3", xlab="", ylab="", pch=20, cex=2)

plot of chunk kmc

set.seed(3)
km.out=kmeans(x,3,nstart=1)
km.out$tot.withinss
## [1] 104
km.out=kmeans(x,3,nstart=20)
km.out$tot.withinss
## [1] 98

Hierarchical Clustering

hc.complete=hclust(dist(x), method="complete")
hc.average=hclust(dist(x), method="average")
hc.single=hclust(dist(x), method="single")
par(mfrow=c(1,3))
plot(hc.complete,main="Complete Linkage", xlab="", sub="", cex=.9)
plot(hc.average, main="Average Linkage", xlab="", sub="", cex=.9)
plot(hc.single, main="Single Linkage", xlab="", sub="", cex=.9)

plot of chunk hc

cutree(hc.complete, 2)
##  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
## [36] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
cutree(hc.average, 2)
##  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 2 2
## [36] 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2
cutree(hc.single, 2)
##  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
cutree(hc.single, 4)
##  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3
## [36] 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3
par(mfrow=c(1,1))
xsc=scale(x)
plot(hclust(dist(xsc), method="complete"), main="Hierarchical Clustering with Scaled Features")

plot of chunk hc

x=matrix(rnorm(30*3), ncol=3)
dd=as.dist(1-cor(t(x)))
plot(hclust(dd, method="complete"), main="Complete Linkage with Correlation-Based Distance", xlab="", sub="")

plot of chunk hc

Ví dụ: Số liệu NCI60

The NCI60 data

library(ISLR)
nci.labs=NCI60$labs
nci.data=NCI60$data
dim(nci.data)
## [1]   64 6830
nci.labs[1:4]
## [1] "CNS"   "CNS"   "CNS"   "RENAL"
table(nci.labs)
## nci.labs
## BREAST CNS COLON K562A-repro K562B-repro LEUKEMIA
## 7 5 7 1 1 6
## MCF7A-repro MCF7D-repro MELANOMA NSCLC OVARIAN PROSTATE
## 1 1 8 9 6 2
## RENAL UNKNOWN
## 9 1

PCA on the NCI60 Data

pr.out=prcomp(nci.data, scale=TRUE)
Cols=function(vec){
cols=rainbow(length(unique(vec)))
return(cols[as.numeric(as.factor(vec))])
}
par(mfrow=c(1,2))
plot(pr.out$x[,1:2], col=Cols(nci.labs), pch=19,xlab="Z1",ylab="Z2")
plot(pr.out$x[,c(1,3)], col=Cols(nci.labs), pch=19,xlab="Z1",ylab="Z3")

plot of chunk pca nci60

summary(pr.out)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6
## Standard deviation 27.853 21.4814 19.8205 17.0326 15.9718 15.7211
## Proportion of Variance 0.114 0.0676 0.0575 0.0425 0.0374 0.0362
## Cumulative Proportion 0.114 0.1812 0.2387 0.2812 0.3185 0.3547
## PC7 PC8 PC9 PC10 PC11 PC12
## Standard deviation 14.4715 13.5443 13.1440 12.7386 12.6867 12.1577
## Proportion of Variance 0.0307 0.0269 0.0253 0.0238 0.0236 0.0216
## Cumulative Proportion 0.3853 0.4122 0.4375 0.4613 0.4848 0.5065
## PC13 PC14 PC15 PC16 PC17 PC18
## Standard deviation 11.8302 11.6255 11.4378 11.0005 10.6567 10.4888
## Proportion of Variance 0.0205 0.0198 0.0192 0.0177 0.0166 0.0161
## Cumulative Proportion 0.5270 0.5467 0.5659 0.5836 0.6002 0.6163
## PC19 PC20 PC21 PC22 PC23 PC24
## Standard deviation 10.4352 10.3219 10.1461 10.0544 9.9027 9.6477
## Proportion of Variance 0.0159 0.0156 0.0151 0.0148 0.0144 0.0136
## Cumulative Proportion 0.6323 0.6479 0.6630 0.6778 0.6921 0.7057
## PC25 PC26 PC27 PC28 PC29 PC30 PC31
## Standard deviation 9.5076 9.3325 9.2732 9.0900 8.9812 8.7500 8.5996
## Proportion of Variance 0.0132 0.0127 0.0126 0.0121 0.0118 0.0112 0.0108
## Cumulative Proportion 0.7190 0.7317 0.7443 0.7564 0.7682 0.7794 0.7903
## PC32 PC33 PC34 PC35 PC36 PC37
## Standard deviation 8.4474 8.3730 8.21579 8.15731 7.97465 7.90446
## Proportion of Variance 0.0104 0.0103 0.00988 0.00974 0.00931 0.00915
## Cumulative Proportion 0.8007 0.8110 0.82087 0.83061 0.83992 0.84907
## PC38 PC39 PC40 PC41 PC42 PC43
## Standard deviation 7.82127 7.72156 7.58603 7.45619 7.3444 7.10449
## Proportion of Variance 0.00896 0.00873 0.00843 0.00814 0.0079 0.00739
## Cumulative Proportion 0.85803 0.86676 0.87518 0.88332 0.8912 0.89861
## PC44 PC45 PC46 PC47 PC48 PC49
## Standard deviation 7.0131 6.95839 6.8663 6.80744 6.64763 6.61607
## Proportion of Variance 0.0072 0.00709 0.0069 0.00678 0.00647 0.00641
## Cumulative Proportion 0.9058 0.91290 0.9198 0.92659 0.93306 0.93947
## PC50 PC51 PC52 PC53 PC54 PC55
## Standard deviation 6.40793 6.21984 6.20326 6.06706 5.91805 5.91233
## Proportion of Variance 0.00601 0.00566 0.00563 0.00539 0.00513 0.00512
## Cumulative Proportion 0.94548 0.95114 0.95678 0.96216 0.96729 0.97241
## PC56 PC57 PC58 PC59 PC60 PC61
## Standard deviation 5.73539 5.47261 5.2921 5.02117 4.68398 4.17567
## Proportion of Variance 0.00482 0.00438 0.0041 0.00369 0.00321 0.00255
## Cumulative Proportion 0.97723 0.98161 0.9857 0.98940 0.99262 0.99517
## PC62 PC63 PC64
## Standard deviation 4.08212 4.04124 2.15e-14
## Proportion of Variance 0.00244 0.00239 0.00e+00
## Cumulative Proportion 0.99761 1.00000 1.00e+00
par(mfrow=c(1,1))
plot(pr.out)

plot of chunk pca nci60

pve=100*pr.out$sdev^2/sum(pr.out$sdev^2)
par(mfrow=c(1,2))
plot(pve, type="o", ylab="PVE", xlab="Principal Component", col="blue")
plot(cumsum(pve), type="o", ylab="Cumulative PVE", xlab="Principal Component", col="brown3")

plot of chunk pca nci60

Clustering the Observations of the NCI60 Data

sd.data=scale(nci.data)
par(mfrow=c(1,3))
data.dist=dist(sd.data)
plot(hclust(data.dist), labels=nci.labs, main="Complete Linkage", xlab="", sub="",ylab="")
plot(hclust(data.dist, method="average"), labels=nci.labs, main="Average Linkage", xlab="", sub="",ylab="")
plot(hclust(data.dist, method="single"), labels=nci.labs, main="Single Linkage", xlab="", sub="",ylab="")

plot of chunk clustering nci60

hc.out=hclust(dist(sd.data))
hc.clusters=cutree(hc.out,4)
table(hc.clusters,nci.labs)
##            nci.labs
## hc.clusters BREAST CNS COLON K562A-repro K562B-repro LEUKEMIA MCF7A-repro
## 1 2 3 2 0 0 0 0
## 2 3 2 0 0 0 0 0
## 3 0 0 0 1 1 6 0
## 4 2 0 5 0 0 0 1
## nci.labs
## hc.clusters MCF7D-repro MELANOMA NSCLC OVARIAN PROSTATE RENAL UNKNOWN
## 1 0 8 8 6 2 8 1
## 2 0 0 1 0 0 1 0
## 3 0 0 0 0 0 0 0
## 4 1 0 0 0 0 0 0
par(mfrow=c(1,1))
plot(hc.out, labels=nci.labs)
abline(h=139, col="red")

plot of chunk clustering nci60

hc.out
## 
## Call:
## hclust(d = dist(sd.data))
##
## Cluster method : complete
## Distance : euclidean
## Number of objects: 64
set.seed(2)
km.out=kmeans(sd.data, 4, nstart=20)
km.clusters=km.out$cluster
table(km.clusters,hc.clusters)
##            hc.clusters
## km.clusters 1 2 3 4
## 1 11 0 0 9
## 2 0 0 8 0
## 3 9 0 0 0
## 4 20 7 0 0
hc.out=hclust(dist(pr.out$x[,1:5]))
plot(hc.out, labels=nci.labs, main="Hier. Clust. on First Five Score Vectors")

plot of chunk clustering nci60

table(cutree(hc.out,4), nci.labs)
##    nci.labs
## BREAST CNS COLON K562A-repro K562B-repro LEUKEMIA MCF7A-repro
## 1 0 2 7 0 0 2 0
## 2 5 3 0 0 0 0 0
## 3 0 0 0 1 1 4 0
## 4 2 0 0 0 0 0 1
## nci.labs
## MCF7D-repro MELANOMA NSCLC OVARIAN PROSTATE RENAL UNKNOWN
## 1 0 1 8 5 2 7 0
## 2 0 7 1 1 0 2 1
## 3 0 0 0 0 0 0 0
## 4 1 0 0 0 0 0 0